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Autoresonant solutions of the nonlinear Schro¨dinger equation

L. Friedland*
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

~Received 9 March 1998!

Resonant driving of the nonlinear Schro¨dinger ~NLS! equation by small-amplitude oscillations or waves
with adiabatically varying frequencies and/or wave vectors is proposed as a method of excitation and control
of wave-type solutions of the system. The idea is based on the autoresonance phenomenon, i.e., a continuous
nonlinear phase locking between the solutions of the NLS equation and the driving oscillations, despite the
space-time variation of the parameters of the driver. We illustrate this phenomenon in the examples of exci-
tation of plane and standing waves in the driven NLS system, where one varies the driver parameters in time
or space. The relation of autoresonance in these applications to the corresponding problems in nonlinear
dynamics is outlined. One of these dynamical problems comprises a different type of multifrequency autoreso-
nance in a Hamiltonian system with two degrees of freedom. The averaged variational principle is used in
studying the problem of autoresonant excitation and stabilization of more general cnoidal solutions of the NLS
equation.@S1063-651X~98!07109-8#

PACS number~s!: 03.40.Kf, 52.35.Mw
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I. INTRODUCTION

The nonlinear Schro¨dinger equation

ic t1cxx1ucu2c50 ~1!

is one of the most important equations of nonlinear phys
It admits a variety of solutions, a well known example bei
the cnoidal wave @1# c(x,t)5a(x2vt)exp$i@k0x2v0t#%,
wherev52k0 , v05k0

22L0 , and the real functiona(s) sat-
isfies

ass2L0a1a350. ~2!

The simplest realizations of the cnoidal waves are pla
constant amplitude wavesc5L0

1/2exp$i@k0x2v0t#% ~here and
in the following we assumeL0.0) and the standing wave
c5a(x)exp(iL0t). In the present work we shall study th
question of adiabatic excitation and control of the cnoi
solutions by adding an external resonant driving on the rig
hand side~RHS! of Eq. ~1!. We shall find a proper choice o
the driving oscillations~waves! for this purpose by using the
idea of autoresonance in the system. A similar problem w
studied recently for driven systems of a certain general c
described by a variational principle@2#. Investigations of par-
ticular examples of autoresonant solutions exist for
Korteweg–de Vries@2–4# and sine-Gordon@5# equations as
well as for coupled sine-Gordon equations@6#.

Autoresonance is a nonlinear phase locking phenome
taking place when a resonantly driven nonlinear system
mains phase locked with the driving oscillation~or wave!
despite the adiabatic variation of the frequency and/or w
vector of the driver. The phase locking is due to the tende
of the driven nonlinear system to preserve the resonanc
slowly adjusting its state~energy, frequency, wave vecto
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etc.! in space-time. Thus variation of the parameters of
driver allows control of the state of the driven system. T
autoresonance phenomenon has its roots in nonlinear dyn
ics and a number of dynamical applications can be found
the literature. These include particle accelerators@7–9#, ex-
citation of atoms@10# and dissociation of molecules@11#,
controlled transition to chaos@12#, and autoresonance i
higher-order dynamical systems@13,14#. We shall also see
the dynamical connection in the present work, which is d
voted to studying autoresonance in the driven nonlin
Schrödinger ~NLS! equation.

The scope of our presentation is as follows. In Sec. II
shall consider the simplest autoresonant solutions in our
tem, i.e., autoresonant plane waves. We shall see that t
solutions can be excited by driving the system by an exte
plane wave with slowly varying frequency. In Sec. III w
shall study a more complex problem of excitation of stand
waves. We shall show that excitation of autoresonant sta
ing waves requires using a superposition of an oscillat
and a standing wave in the driver. In Sec. IV we shall furth
generalize our theory for studying the excitation and stabi
of more general autoresonant cnoidal waves in the NLS s
tem. We shall approach this problem by constructing an
eraged variational principle for the phase locked driven N
equation. Several applications of the variational theory
given in Sec. V. Finally, Sec. VI presents our conclusio
and Table I gives a glossary of symbols and the locati
where these symbols appear for the first time.

II. TEMPORAL AUTORESONANCE: AUTORESONANT
PLANE WAVES

In this section we illustrate the idea of autoresonant ex
tation of a nonlinear wave by studyingtemporal autoreso-
nance in the NLS system. Consider the driven NLS equa

ic t1cxx1ucu2c5« exp$ i @k0x2k0
2t1f~ t !#%, ~3!

where the RHS represents a small, constant amplitude«
!1) plane wave having wave vectork0 andslowly varying
frequencyk0

22L(t), whereL(t)[df/dt and all variables
3865 © 1998 The American Physical Society
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TABLE I. Glossary of symbols.

Symbol Definition

c a solution of the nonlinear Schro¨dinger equation~1!

a,k0 ,v0 the amplitude, wave number, and frequency of a cnoidal wave@below Eq.~1!#

v the velocity of the filling phase@below Eq.~1!#

«,f,L the amplitude, phase factor, and associated frequency of the driver@Eq. ~3!#

F the phase mismatch@Eq. ~4!#

I ,u,H the canonical action, angle, and Hamiltonian in the dynamical problem assoc
with temporal autoresonance@below Eq.~5!#

C, k the phase and wave number of the spatial modulation of the driver@below Eq.~7!#

Veff the effective potential@Eq. ~9!#

J,Q;B,j the radial and azimuthal action-angle pairs associated with the spatial
autoresonance@below Eq.~11!#

S the generating function@below Eq.~12!#

A the energy parameter@Eq. ~13!#

U,V the radial and azimuthal solutions@Eqs.~15! and ~16!#

l(J,B),b(J,B) the radial wavelength and azimuthal wave number@below Eq.~16!#

a0,1 the amplitudes of the zero and first harmonics of radial oscillations
@below Eq.~17!#

m the mismatch of the radial oscillations@Eq. ~19!#

k,v the wave number and frequency associated with the driving phase and
amplitude, respectively@below Eq.~25!#

L,L0 the Lagrangians@Eq. ~27!#

V,K the frequency and wave number associated with the radial angle variable
@below Eq.~28!#

g,b the frequency and wave number associated with the azimuthal angle variab
@below Eq.~28!#

L,L0,1 the averaged Lagrangian and its components@Eq. ~29!#

h the velocity parameter@below Eq.~30!#

R the frequency parameter@below Eq.~33!#

n,k the frequency and wave number of the slow modulations@below Eq.~51!#

d1 – 4 the coefficients in the dispersion relation~52!

c1 – 3 the coefficients in the characteristic equation~59!
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and parameters are dimensionless. We are interested in
ing solutions of Eq.~3! that are phase locked with the drive
Therefore, we write the solution asc5a(x,t)exp$i@k0x2k0

2t
1u(x,t)#%, where Im(a,u)50. Then f [a exp(iu) satisfies
i ( f t1v f x)1 f xx1u f u2f 5« exp@if(t)#, where, as in Sec. I,v
52k0 . By separating the real and imaginary parts in the l
equation and defining the phase mismatchF[u2f(t), we
obtain the equivalent pair of real equations

at1vax1aFxx12axFx52« sin F,
~4!

a~F t1vFx!2axx1aFx
21La2a352« cosF.

First, we seek the solution of Eq.~3! satisfying auniform
initial condition c(x,t5t0)5c0 , where uc0u!1. Conse-
quently, we study solutions of the purely time-depend
limit of Eq. ~4!:

at52« sin F,
~5!

F t5a22L~ t !2~«/a!cosF,

subject to the initial conditionsa(t0)!1 andF(t0)5F0 ~an
arbitrary constant!. Equations ~5! can be interpreted a
Hamilton’s equations for a one degree of freedom dynam
d-

t

t

al

problem, with the Hamiltonian H(I ,u,t)5I 2/2
12«I 1/2cos(u2f), whereI[a2 andu serve as the canonica
action-angle pair of the unperturbed HamiltonianH0(I )
[I 2/2. The latter describes an oscillator of frequen
]H0 /]I 5I , while the perturbed HamiltonianH(I ,u,t) has
the characteristic form, known as thesingle resonance ap
proximation in the standard theory of nonlinear resonan
@15#, but for the case of a slowly varying frequencyf t
5L(t) of the driving oscillation. A similar adiabatically
driven dynamical problem was studied in Ref.@16#. The au-
toresonant solution is obtained when the driving frequen
L(t) passes linear resonance with the unperturbed oscilla
i.e., the pointL50. We illustrate this solution of Eqs.~5! in
Fig. 1, showing the numerical results for the amplitudea
@Fig. 1~a!# and the phase mismatchF~mod 2p! @Fig. 1~b!#
for «50.05 and

L~ t !5H L0sin~ 1
2 pt/T0!, 2T0.t.T0

L0 , ṫ.T0 ,

whereT05200 andL052. We have used the initial condi
tions ~at t052T0) a50.01 andF5p in these calculations
Figure 1 demonstrates the initial phase trapping stage,t
,0, where the phase mismatchF~mod 2p! settles near zero
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FIG. 1. Autoresonant excitation of a plane wave in the driven NLS system. The solid lines show~a! the amplitudea of the wave and~b!
the phase mismatchF~mod2p!. The dashed line represents~for t.0) the smooth autoresonant solution@L(t)#1/2 for the amplitude.
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At later times, after the trapping, one can see a typical
toresonant evolution of the system, as the nonlinear
quency shifta2 approximately follows the driving frequenc
L(t) „we show the values of@L(t)#1/2 by the dashed line in
Fig. 1~a!#…, despite the time variation of the frequency. O
can also see that, in autoresonance, the system perf
small ~and slow! autoresonant oscillations around the qua
equilibrium solutions. These oscillations comprise an ad
tional characteristic signature of autoresonance and their
quency scales asn'A2«a @16#. In conclusion, at final
evolution times, whenL approachesL0 , one arrives at the
simplest, plane cnoidal wave solutionc'a0 exp$i@k0x2(k0

2

2L0)t#% in the driven NLS system with the amplitudea0

'L0
1/2 controlled by the final value of the driving frequenc

At this point we recall that, so far, spatial variations ha
been suppressed. Now we remove this restriction and c
sider the question of stability of the temporally autoreson
solution with respect to small spatial perturbations. We sh
limit the analysis to studying the stability of the unifor
autoresonant solution at times beyondT0 , when the time
varying part of the driving frequency arrives at its consta
valueL5L0 . We again seek solutions of Eqs.~4!, but now
a andu are functions of space-time. The system~4! is satis-
fied by F5F̄[0 anda5ā given by ā32L0ā2«50, i.e.,
ā'L0

1/2 ~note thatF̄ andā are the time averaged values ofF
anda in Fig. 1 att.T0). By perturbing this steady state, i.e
writing F(x,t)5F̄1dF(x,t)5dF(x,t) and a(x,t)5ā
1da(x,t), where dF,da;exp@i(kx2nt)#, and linearizing
Eqs.~4! aroundF̄ and ā one finds the dispersion relation

~n2kv !25~k22«/ā!~k222L023«/ā!. ~6!

Equation ~6! predicts an instability for«/ā,k2,2L0
13«/ā. Nevertheless, in contrast to the free («50) plane
wave solution, which is always unstable at sufficiently sm
k, there exists astability windowk2,«/ā for the autoreso-
u-
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-
i-
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nant solution. Thus the autoresonant driving stabilizes
plane wave solutions with respect to sufficiently slow spa
modulations.

III. SPATIAL AUTORESONANCE: AUTORESONANT
STANDING WAVES

In this section we consider the boundary value driv
NLS problem

ic t1cxx1ucu2c5«~x!exp~ iL0t !, ~7!

where, at some position~say, x5x0) and for all times,
c(x0 ,t) is the stationary autoresonant plane wave of the p
ceding section fork050 and constant valueL0 of the driv-
ing frequency. Thus, on the boundary,c(x0 ,t)
5a0exp@iu0(t)#, wherea05L0

1/21da0 , u05L0t1du0 ~i.e.,
F05u02L0t5du0[dF0), anda0x5F0x50. Note that we
allow small, but constant, perturbationsda0 anddF0 in the
boundary conditions, so the following analysis tests the s
bility of the autoresonant solutions with respect to these p
turbations. Also, in contrast to Eq.~3!, where the amplitude«
of the driving oscillation was fixed, we add a quasiperiod
spatial modulationin the RHS in Eq.~7! and use«(x)[«0
1«1cos@C(x)#, wherek (x)[Cx is a slowly varying wave
number of the modulation. One could choose a differ
form of quasiperiodic modulation; the only requireme
would be ~see below! a sufficiently large average of«(x)
over one spatial oscillation. Thus we drive our system by
superposition of an oscillation«0exp(iL0t) and a standing
wave «1cosC(x)exp(iL0t). We shall see that thisdouble
driving is essential for stabilizing the resulting autoreson
solution.

Now we write the desired solution of Eq.~7! as c
5a(x)exp$i@L0t1F(x)#%, wherea(x) and F(x) satisfy the
spatial limit of Eqs.~4! with «5«(x), L5L0 , andv50:
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aFxx12axFx52«~x!sin F,
~8!

axx2aFx
22L0a1a35«~x!cosF.

The rest of this section is devoted to studying autoreson
solutions of this purelyx-dependent system. The tempor
modulations of these solutions will be included in Sec. IV

We proceed by observing that Eqs.~8! comprise a two
degrees of freedomdynamicalproblem, wherex plays the
role of ‘‘time.’’ Indeed Eqs.~8! are Lagrange’s equations
when the Lagrangian isL(a,ax ;F,Fx)5L01«(x)a cosF
and

L0~a,ax ;Fx![
1
2 ~ax

21a2Fx
2!1~ 1

2 L0a22 1
4 a4!. ~9!

Now, for convenience, we make the transition from the L
grangian to the Hamiltonian formulation. To this end, w
define the canonical momentapa[]L/]ax5ax and pF

[]L/]Fx5a2Fx and write the associated Hamiltonian

H5axp
a1Fxp

F2L5H01H1 , ~10!

where

H05 1
2 @~pa!21~pF/a!2#1Veff~a!,

~11!

H152«~x!a cosF,

andVeff(a)[21
2L0a

211
4a

4. The unperturbed HamiltonianH0
describes theplanar motion of a quasiparticle of unit mas
under the action of acentral force given by the potentia
Veff . The variablesa and F, in this interpretation, play the
roles of polar coordinates of the quasiparticle, whilepa,F are
the radial andangularmomenta of the quasiparticle, respe
tively. Then the perturbed partH1 of the Hamiltonian can be
viewed as representing the interaction of the quasipart
with an external,uniform quasiperiodic force of strengt
«(x) acting in theF50 direction in the plane. We illustrat
this useful interpretation in Fig. 2, showing the effective p
tential as a function of the Cartesian coordinatesX
5a cosF andY5a sinF for the caseL052. Note that the
initial position of the quasiparticle in theX-Y plane, a0

5L0
1/21da0 , F05dF0 , corresponds to a near equilibrium

~minimum! point in the effective potential. In the rest of th

FIG. 2. QuasipotentialVeff(a) versus X5a cosF and Y
5a sinF. The initial position of the quasiparticle, i.e.,a0'L0

1/2,
F'0, is shown by a solid dot. The arrow indicates the direction
the uniform field« acting on the quasiparticle in the dynamic
analog.
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section we study autoresonant excitation of the radial os
lations of thistwo-dimensionaloscillator. This problem dif-
fers from the autoresonance problems studied previously
the presence of the secondresonant~azimuthal! degree of
freedom. The question of autoresonant stabilization of
azimuthal motion will be discussed. The following analys
is also important as a step for studying~in Sec. IV! a more
general, space-time autoresonance in the driven NLS sys

The most convenient description of autoresonance in
two degrees of freedom system is obtained by transform
to the action-angle variables of the unperturbed Hamilton
H0 . This Hamiltonian is independent ofF ~F is a cyclic
variable! and therefore the angular momentumpF[B re-
mains constant in the unperturbed problem. We use this
and make the canonical transformation of variab
(a,pa;F,B)→(Q,J;j,B) via the generating function

F~a,J;F,B![S~a,J,B!1FB. ~12!

Here S(a,J,B)[*ap* @A(J,B),B,a8#da8, where
p* (A,B,a) is defined as the solution of

H05 1
2 @~pa!21~B/a!2#1Veff~a!5A ~13!

for pa, and the radial action variableJ is given by

J~A,B![~2p!21 R p* ~A,B,a!da. ~14!

Also, we have rewritten Eq.~14! asA5A(J,B) in the defi-
nition of S(a,J,B). The generating function~12! defines the
angle variable conjugate to the actionJ, i.e., Q(a,J,B)
[]F/]J5]S/]J or, by inversion,

a5U~Q,J,B!. ~15!

Similarly, the canonical angle variable conjugate toB is j
[]F/]B5F2V(a,J,B), where V(a,J,B)[2]S/]B5
2*a(]p* /]B)da85V(Q,J,B), so

F5j1V~Q,J,B!. ~16!

Note that the change ofS(a,J,B) during one period of radia
oscillations is DS52pJ, so Q changes by 2p and thus
U(Q,J,B) is 2p periodic in Q. On the other hand, the
change ofV over an oscillation isDV52](DS)/]B50, so
V(Q,J,B) is also 2p periodic inQ.

Since the generating function~12! does not depend onx
explicitly ~recall thatx is our time variable!, the transformed
unperturbed Hamiltonian is simplyH05A(J,B). Conse-
quently, in the unperturbed problem, the actionsJ,B and the
frequencies Qx5]A/dJ[2p/l(J,B) and jx5]A/]B
[b(J,B) remain constant. Note thatb describes aconstant
angular velocity component characterizing the evolution
the cyclic variableF in our central force problem, while
V(Q,J,B) is the component ofF oscillating with the period
of the radial oscillations. Next we express the perturbed p
of the Hamiltonian H152«(x)a cosF in terms of the
action-angle variables of the unperturbed problem:

H152~«01«1cosC!U~Q,J,B!cos@j1V~Q,J,B!#.
~17!

f
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Here, because of the periodicity inQ, we can
expand U cosV5(nan(J,B)exp(inQ) and U sinV
5(nbn(J,B)exp(inQ). Finally, we make the double resonan
approximation, i.e., assume a persistingapproximatedouble
resonancej'0 andQ2C'0 in the system and, by neglec
ing all the nonresonant terms in Eq.~17!, replace the per-
turbed partH1 of the Hamiltonian~10! by

H̃152$«0a01Re@«1a1ei ~Q2C!#%cosj

1$«0b01Re@«1b1ei ~Q2C!#%sin j.

Here we shall also assume that the perturbed motion is s
that, in addition toj, V remains small for all times~i.e., the
cyclic variableF5j1V is always small! and, consequently
neglect the part ofH̃1 associated withV. Then our double
resonance approximation for the transformed Hamilton
becomes

H̃~Q,j;J,B;x!5A~J,B!2$«0a0~J,B!1«1a1~J,B!

3cos@Q2C~x!#%cosj, ~18!

where we have chosenU cosV to be an even function ofQ,
so a1 is real.

At this stage, we proceed to studying the evolution giv
by Eq. ~18!. The corresponding Hamilton equations are

Jx5«1a1sin m cosj,

mx52p/l~J,B!2k ~x!2@«0a0J2«1a1Jcosm#cosj,

~19!
Bx52@«0a02«1a1cosm#sin j,

jx5b~J,B!2@«0a0B2«1a1Bcosm#cosj,

where we have introduced the phase mismatchm[p1Q
2C of the radial oscillations and substituted the wave vec
of the driving modulationCx5k (x). The boundary condi-
tions for this system areJ5dJ0!1 ~recall that the quasipar
ticle starts near the minimum of the effective potential we
whereJ50), m5p2C ~we have setQ50 at the bound-
ary!, B50, and j5dF0 . Next we observe that Eqs.~19!
allow the azimuthal equilibrium withB5j[0. Indeed, from
Eq. ~14!, for small B, A(J,B)5A0(J)1O(B2) and, simi-
larly, a0.15a0.1

0 (J)1O(B2). Thenb, a0B , anda1B all scale
as O(B) and thus vanish atB50. Therefore, the last two
equations of Eqs.~19! are satisfied trivially forB5j50,
while the first two become

Jx5«1a1
0sin m,

~20!
mx52p/l0~J!2k ~x!2~«0a0J

0 2«1a1J
0 cosm!.

This system has the same form as the evolution equation
dynamic autoresonance in the one degree of freedom p
lem described in Sec. II@compare to Eqs.~5!#. Therefore,
one can expect to find the phase locked solution of Eq.~20!
similarly to that described in Sec. II. In other words, if, at t
boundary,J is sufficiently small, the trapping into resonan
(m→0) takes place ask (x) passes the linear resonan
point xr , wherek (xr)52p/l0(0), while beyond this point,
ch

n

n

r

,

for
b-

under certain conditions, the system enters the autoreso
regime. In autoresonance, due to self-adjustment of the
tion J, the approximate resonance conditionK0(J)
[2p/l0(J)'k (x) is preserved continuously, despite th
variation ofk .

Finally, we include the azimuthal perturbations and sh
that they can be stabilized in our system. Indeed, assume
B and j do not vanish, but remainO(«1/2) @« being
max(«0,«1)# continuously~we shall verify this assumption
later!. Then, for sufficiently smallm, to lowest order in«,
Eqs.~19! become

Jx5«1a1
0sin m,

~21!

mx5K0~J!2k ~x!,

and

Bx52~«0a02«1a1!sin j,
~22!

jx5b~J,B!.

Equations~21! are independent ofB andj, so the autoreso-
nant evolution ofJ andm is similar to that described previ
ously. On the other hand, by differentiating the second eq
tion of Eqs. ~22! and substituting the first equation in th
result, one obtains

jxx'2~«0a02«1a1!bBsin j. ~23!

Therefore, sincebB.0, we have an oscillating evolution o
j, as long as«0a0.«1a1 , and the characteristic spatial fre
quency of these oscillations iskj5@(«0a02«1a1)bB#1/2.
This frequency varies adiabatically as the actionJ evolves in
the autoresonance according to Eqs.~21!. Then, if j is small
at the boundary, it remains small at later times provided
variation of J is sufficiently slow. Also, by integrating the
first equation of Eqs.~22!, we find the assumed scalingB
;(«0a02«1a1)/kj;O(«1/2). Note that the characteristi
frequencykj of the oscillations ofj differs from that of the
oscillations ofm. Indeed, by differentiating the second equ
tion of Eqs. ~21! and substituting the first equation in th
result, one obtains

mxx5«1a1KJ
0 sin m2kx . ~24!

Therefore, sinceKJ
0,0, the characteristic frequency of th

radial phase mismatch oscillations iskm'(«1a1
0uKJ

0u)1/2,
which differs fromkj, but bothkj andkm scale as«1/2. Note
that, for small values of the radial actionJ, the Fourier co-
efficient a0'a0 , while a1;J1/2!a0 . Therefore, the pres
ence ofa0 in Eq. ~23! is essential for stabilizing the azi
muthal motion in the initial autoresonant excitation stag
Since the presence of the coefficienta0 in our theory can be
traced back to the presence of the nonvanishing spatial a
age of the modulations of the driver, this average is nec
sary for the azimuthal stabilization. One can also give a m
chanical interpretation of the azimuthal stabilization. Inde
the presence of the constant force«0 in theF50 direction in
our driven dynamical problem given by the Hamiltonian~10!
can be regarded as due to the additional poten
2«0a cosF52«0X, which simply tilts the effective poten



n
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FIG. 3. Autoresonant excitation of standing wave solutions of the NLS equations.~a! The amplitudea and the quasiperiodic modulatio
of the driverM52«1cos@C(x)# versus position. One observes the autoresonant phase locking in the driven system.~b! The phaseF and the
energyÂ versus position. These results demonstrate the azimuthal stability of the autoresonant solutions and the presence of the
istic autoresonant oscillations of the solutions around their slowly evolving averages.
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tial shown in Fig. 2 around theY5a sinF axis, lowering the
X.0 part ofVeff , thus creating alocal minimumin the po-
tential atY50, X'L0

1/2.
We conclude this section by numerical examp

presented in Figs. 3 and 4. We solve Eq.~7! for
«(x)5«01«1cos@C(x)#, «0,150.04, k (x)5Cx5k 0

1Dk sin@ 1
2px/X0#, k 05(2L0)1/2, Dk 50.4k 0 , L052, and

X05500, subject to the boundary conditions~at x052200)
da050.005, dF050.02, anda0x5F0x50. The results of
these calculations for the amplitudea are shown in Fig. 3~a!.
We observe the efficient excitation of the radial oscillatio
of a as one passes the linear resonance pointx50. We also
show the phase-shifted~by p! quasiperiodic part M
5«1cos@C(x)2p#52«1cosC of the modulation of the
driver in Fig. 3~a! and notice the phase locking of the osc
lations ofa with those ofM. The phase locking reflects th
predicted spatial autoresonance in the system. We also
culateF and the energyÂ5 1

2 (ax
21a2Fx

2)1Veff(a) and show
these results in Fig. 3~b!. One can see the autoresona
growth of the averaged energy, as the system self-adjus
parameters to stay in resonance with the driver. Figure 3
illustrates the aforementioned slow autoresonant oscillat
~around smooth averages! of F and Â with two different
spatial frequencieskj andkm, respectively. Finally, in Fig. 4
we present the solutionsF and Â for the same parameter
and boundary conditions as in Fig. 3~b!, but with «050.01.
One can see the development of the azimuthal instab
when one violates~see above! the condition«0a0.«1a1 at
x'200. The phase locking and the autoresonance dis
tinue beyond this point. This completes our illustration of t
adiabatic resonant excitation of standing wavesc
5a(x)exp@i(L0t1F)#'a(x)exp(iL0t) in the driven NLS sys-
tem and we proceed to the problem of autoresonant ex
tion and stabilization of more general cnoidal waves.
s
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IV. AVERAGED VARIATIONAL PRINCIPLE:
SLOW EVOLUTION EQUATIONS

In this section we study the boundary value problem sim
lar to that described in Sec. III, but use a more general d
ing term, i.e., consider solutions of

ic t1cxx1ucu2c5«~x,t !exp@ iw~x,t !#, ~25!

where w(x,t)5f(x)2v0t and «(x,t)5«01«1cos@C(x)
2vt#. We write c5a exp(iu) and replace Eq.~25! by the
pair of real equations@see the similar system~4! in Sec. II#

at1vax1aFxx12axFx1 1
2 avx52«~x,t !sin F,

~26!
a~F t1vFx!2axx1aFx

21La2a352«~x,t !cosF,

where F(x,t)[u(x,t)2w(x,t), v(x)[2k(x), k(x)
[df/dx, and L(x)[k2(x)2v0 . The space and the tim
dependences ofa and F are now included in the problem
Time dependence enters via the modulation of the amplit
of the driver and/or time-dependent boundary conditions~at
x5x0) a05@L(x0)#1/21da0(t) and F05dF0(t), while
a0x5F0x50. An important ingredient of the following
theory is the assumption of the presence ofslow and fast
space-time scales in the problem. Let only the slow ti
variation be present in the boundary conditions. On the ot
hand, we assume that bothf(x)2v0t andC(x)2vt in the
driving term are varying on the fast space-time scale, but
frequenciesv,v0 are constant, whilek (x)[dC/dx and
k(x)[df/dx are slowly varying functions of position. Th
purpose of the theory is to show that a proper choice ofk (x)
andk(x) yields a stable, adiabatically varying cnoidal sol
tion with the amplitudea of the form of a quasiperiodic wave
moving with the velocityv(x)[2k(x). We shall see that
for exciting this solution, one needs to matchv(x) to the
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FIG. 4. PhaseF and energyÂ versus position for the same parameters and boundary conditions as in Fig. 3~b!, but with smaller value
of «050.01. The figure shows the azimuthal instability of the autoresonant solution when the condition«0a0.«1a1 is violated atx
'200, destroying the phase locking and the autoresonance in the system.
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phase velocityv/k (x) of the modulation of the driver, i.e.
to impose the condition 2k(x)k (x)5v. This condition
agrees with the results of Sec. III, studying autoreson
standing waves. Indeed, for the standing waves,v[0 and
therefore purely spatial modulations (v[0) of the external
forcing used in Sec. III satisfy the above-mentioned con
tion. Finally, note that in the case of standing waves,k (x)
must be sufficiently slow, but otherwise arbitrary~in contrast
to the traveling waves!.

The assumed presence of the two different space-t
scales allows one to develop the theory of autoresonanc
our driven system by using Whitham’s averaged variatio
principle @17#. To this end, we observe that Eqs.~26!
can be obtained from the variational princip
d**L(a,ax ;F,Fx ,F1)dx dt50, where the two-field La-
grangian is of the formL5L01«(x,t)a cosF and the un-
perturbed part is

L0~a,ax ;Fx ,F t![
1
2 @ax

21a2~Fx
21F t1vFx!#

1 1
2 La22 1

4 a4. ~27!

Note that Eq.~27! does not depend on the fieldF, but only
on its space-time derivatives and therefore, in the unp
turbed problem,F is a potential ~the analog of the cyclic
variable in the dynamical problem!. The averaged variationa
principle for studying autoresonance in general driven tw
field problems withL0 of this type, but for a different form
of the perturbation, was constructed recently@2#. Although
we can use many ingredients of that theory in our appli
tion, we shall repeat the main steps of the construction,
completeness.

As a starting point, we introduce the following two-sca
representationof the solutions@compare to Eqs.~15! and
~16! in the dynamical problem in Sec. III#
nt

i-

e
in
l

r-

-

-
r

a[U~Q,x,t !, F[j~x,t !1V~Q,x,t !, ~28!

where the explicitly shownx,t dependence is slow, while
Q(x,t) is a fast angle variable and bothU andV are assumed
to be 2p periodic inQ. Also, one assumes that the frequen
V(x,t)[2Q t and wave vectorK(x,t)[Qx , as well as the
derivativesg(x,t)[2j t andb(x,t)[jx are slow functions
of space-time. The secular componentj in F ~the term of
this type is absent ina! is necessary for properly representin
the potential field and the quantitiesg andb are the slowQ
averages of the derivatives ofF. We have already seen thes
ingredients in the theory when studying standing autore
nant waves in Sec. III.

At this stage, we introduce the averaged variational pr
ciple @17#, i.e., instead of the original variational principle
used**L dx dt50, whereL is the averaged Lagrangian

L[~2p!21E
0

2p

L dQ5L01L1 ~29!

split into the unperturbed part andO(«) perturbation. The
averaging in Eq.~29! is defined by holding the slow vari
ables in the integrandfixedat a given position and time. Th
calculation ofL0,1 is the next necessary step in the theory.
mentioned earlier, we neglect the slow variations of all t
dependent variables and parameters in this calculation.
use Fx5b1KVQ , to expressVQ5K21(Fx2b), and F t
52g2VVQ5d2(V/K)Fx , where d[2g1(V/K)b.
Then the unperturbed Lagrangian~27! can be written as

L05 1
2 ~ax

21a2Fx
2!1 1

2 ha2Fx1 1
2 ~L1d!a22 1

4 a4, ~30!

whereh[v2V/K is thevelocity mismatchandV, K, andd
are evaluated at their local~still unknown! values. Now we
observe that, similarly to the casev5V5d50 studied in
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Sec. III, the unperturbed Lagrangian~30! describes a two
degrees of freedom dynamical problem, wherex plays the
role of time. Therefore, again, in solving thisdynamical
problem@the solution is necessary for performing the av
aging in Eq.~29!#, we use the Hamiltonian formulation. W
define the usual canonical momenta

pa[]L0 /]ax5ax ,
~31!

pF[]L0 /]Fx5a2~Fx1 1
2 h!

and observe that, since Eq.~30! is independent ofF, pf

[B(x,t) is a slow variable. Next we write the unperturbe
HamiltonianH05axp

a1FxB2L0 or, after some algebra,

H05 1
2 @ax

21~B/a!2#2 1
2 hB1Veff~a!, ~32!

where

Veff~a!52 1
2 Ra21 1

4 a4 ~33!

and R[L2g1(v2h)b2 1
4 h2. Since only the slow space

time dependence enters the Hamiltonian explicitly, the
ergy H0[A(x,t) is the second slow dependent variable
the problem, in addition toB(x,t). Now, according to Eq.
~32!, the fast spatial variation ofa in the unperturbed prob
lem can be found by solving

1
2 @ax

21~B/a!2#1Veff~a!5A8, A8[A1 1
2 hB. ~34!

Equations~34! show thata can be interpreted as the radi
component of the planar motion of a quasiparticle of u
mass, energyA8, and angular momentumB under the action
of the central force characterized by the potentialVeff . Note
that if B, h, b, and g are all small, this planar motion i
nearly the same as that studied for spatially autoreso
oscillations in Sec. III@see the Hamiltonian~11!#.

At this point, we identify the fast variableQ in Eq. ~28!
with the canonical angle variable of the radial oscillations
the unperturbed dynamical problem described above~the
motion in the quasipotentialVeff) and average the expressio
H0[axp

a1FxB2L05A82 1
2 hB with respect toQ between

0 and 2p, yielding

L05KJ~A8,B,R!2A81B~b1 1
2 h!, ~35!

where@compare to Eq.~14!#

J~A8,B,R![~2p!21 R $2@A82 1
2 ~B/a!2

2Veff~R,a!#%1/2da ~36!

is the canonical action variable associated with the ra
oscillations. Later we shall use the following partial deriv
tives of the action:

JA85~2p!21l~A8,B,R!,

JB52BJA8^a
22&av, ~37!

I R50.5I A8^a
2&av,

where
-

-

t

nt

al
-

l~A8,B,R![ R $2@A82 1
2 ~B/a!22Veff~R,a!#%21/2da

~38!

is the wavelength associated with the radial oscillations
^¯&av[(2p)21*0

2p(¯)dQ.
Next we calculate the perturbed part

L15^$«01«1cos@C~x!2vt !#%U cos~j1V!&av,

of the averaged Lagrangian~29!. By making the same double
resonance approximation as in deriving the perturbed pa
Eq. ~18!, i.e., by assuming thatV and j are continuously
small and that the phase mismatchm[Q2(C2vt)1p is
slow ~this is our phase locking assumption!, we find

L1'~«0a02«1a1cosm!cosj, ~39!

where the coefficientsa0.1 are again associated with the ze
and first harmonics in the Fourier expansio
U(Q,J,B)cosV(Q,J,B)5(nan(J,B)exp(inQ). Thus the aver-
aged Lagrangian in the driven NLS problem of interest b
comes

L5KJ~A8,B,R!2A81B~b1 1
2 h!

1~«0a02«1a1cosm!cosj. ~40!

At this stage, we can write the variational evolution equ
tions in our problem. We observe that the averaged Lagra
ian depends on four field variables, i.e.,L5L(A8;B;Q,Qx
5K,Q t52V;j,jx5b,j t52g). By taking the variations
in d**L dx dt50 with respect to these dependent fields,
obtain four evolution equations. For example, the variat
with respect toA8 yields

KJA8211~«0a0A82«1a1A8cosm!cosj50 ~41!

or, since mx5K2k (x) and JA85(2p)21l(A8,B,R) @see
the first equation of Eqs.~37!#,

mx52pl212k ~x!

22pl21~«0a0A82«1a1A8cosm!cosj. ~42!

The variation with respect toB gives KJB1b1 1
2 h

1(«0a0B2«1a1Bcosm)cosj50 or, by using the second
equation of Eqs.~37!,

jx5BKJA8^a
22&av2

1
2 h2~«0a0B2«1a1Bcosm!cosj.

~43!

Finally, the variations with respect toQ andj yield

~J1KJRRK1 1
2 BV/K2!x2~KJRRV2 1

2 B/K ! t

5«1a1cosj sin m ~44!

and

~VJR1B!x1~KJR! t52~«0a02«1a1cosm!sin j,
~45!
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whereJR is given by the third equation of Eqs.~37!. Equa-
tions~42!–~45! are the desired evolution equations for stud
ing the autoresonant cnoidal wave solutions of the driv
NLS equation.

V. APPLICATIONS OF THE VARIATIONAL APPROACH

A. Transition to the purely x-dependent case

As a first application, we check the transition to the pur
x-dependent case studied in Sec. III. This transition is
tained by settingV, g, v, v, and all the time derivatives in
Eqs.~44! and ~45! to zero. The resulting system is

mx52pl212k ~x!

22pl21~«0a0A82«1a1A8cosm!cosj,

jx52KJB2~«0a0B2«1a1bcosm!cosj,
~46!

Jx5«1a1cosj sin m,

Bx52~«0a02«1a1cosm!sin j.

Here, on the RHS in the first equation of Eqs.~46!,
one can replace (̄ )A85JA8(¯)J5l(2p)21(¯)J .
Also, in the second equation,KJB5KJA8(JB /JA8)5
2KJA8]A8(J,B)/]B52KJA8b(J,B) and since, from Eq.
~41!, KJA8511O(«), we haveKJB'2b(A8,B,R). With
these substitutions, Eqs.~46! coincide with Eqs.~19! of Sec.
III.

B. Stability of autoresonant standing waves

Our second application is devoted to studying the stab
of the autoresonant standing wave solutions of Sec. II w
respect to small periodictemporal modulations. The latter
can be introduced in the problem via a periodic time dep
dence in the boundary conditions. For the standing wa
we setv5v50, but now keep the time derivatives in Eq
~45! and ~46! and include nonvanishingV and g. Also, for
simplicity, we shall focus on the autoresonant evoluti
stage, where, to lowest order in« ~see below!, one can ne-
glect the interaction terms in Eqs.~45! and ~46!. Further-
more, we shall neglect the space variation of the wave ve
k in our analysis.

We proceed by making the following ordering assum
tions, subject toa posteriori verification. By definition,K
5k 1mx and V52m t . We shall view bothmx and m t in
these expressions as small and ofO(«1/2). This is our phase
locking assumption between the radial oscillations and
modulation of the driving wave. In addition, we assume t
the slow variableB ~as in the case of the standing waves
Sec. III!, b5jx , and g52j t ~and therefored! are also
small and ofO(«1/2). Finally, we view both the radial phas
mismatchm and the azimuthal shiftj as beingsufficiently
small for approximating cos(m,j)'1 and sin(m,j)'(m,j) in
our evolution equations. With these assumptions, to low
significant order in«, Eqs.~42!–~45! become

mx'K02k 1KR
0j t ,

jx'Bp02~2k !21m t ,
~47!
-
n

y
-

y
h

-
s,

or

-

e
t

st

JA8
0 Ax81~2k !21~B2JR

0m t! t'«1a1
0m,

Bx1k ~JRA8
0 At81JRR

0 j tt!'2~«0a0
02«1a1

0!j.

Here we have used the expansion 2pl21[K(A8,B,R)
'K02gKR

0, while p0[^a22&av and all other objects with
the zero subscript are evaluated atB50 andR5L.

Now we observe that Eqs.~47! have a trivial solutionm̄
5 j̄5B̄50 andA85Ā given by K0(Ā)2k 50. This is the
space-time averaged autoresonant solution described in
III. In studying the stability of this solution, we add a sma
perturbationA85Ā1dA and linearize Eqs.~47! with respect
to dA. Then the first and third equations in this system b
come

mx'K̄ĀdA1K̄Rj t , ~48!

J̄ĀdAx1~2k !21~B2 J̄Rm t! t'«1ā1m, ~49!

where (̄ ) means evaluations atA85Ā, B50, andR5L.
The remaining two equations of Eqs.~47!, to lowest order,
remain the same, but with the coefficients evaluated atĀ,
i.e.,

jx'Bp̄2~2k !21m t , ~50!

Bx1k ~ J̄RĀdAt1 J̄RRj tt!'2~«0ā02«1ā1!j. ~51!

The solution of the linear homogeneous system~48!–~51!
has the form (dA,B,m,j);exp@i(kx2nt)#, with k andn sat-
isfying the dispersion relation

@k21d1n21~K̄Ā / J̄A!«1ā1#@k21d2n22 p̄~«0ā02«1ā1!#

1d3d4~nk!250, ~52!

where

d15~0.5K̄Ā /k J̄Ā!@~2k p̄!212 J̄R#,

d25k p̄~ J̄RR2K̄RJ̄RĀ /K̄Ā!,
~53!

d35K̄R2K̄Ā~2k J̄Āp̄!21,

d45~2k !211k J̄RĀp̄/K̄Ā.

Note that Eq. ~52! justifies the assumed scaling
k,n;O(«0

1/2). Also, from Eqs. ~48! and ~50! we obtain
dA,B;O(«0

1/2), justifying another assumption in the theor
Now we proceed to the stability problem. In the casen50,
Eq. ~52! yields two solutions

k1
252~K̄Ā / J̄A!«1ā1 ,

~54!
k2

25 p̄~«0ā02«1ā1!,

in agreement with the predictions of the theory in Sec.
@see Eqs.~23! and ~24!#. Since the right-hand sides of Eq
~54! are positive,purelyspatial modulations are stable. The
by continuity, sufficiently slow~small n! temporal modula-
tions of autoresonant standing waves are also stable unt
n increases, one reverses the signs in the solutions of
~52! for k2.
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C. Autoresonant cnoidal waves

In this application, we study purelyx-dependent solutions
of the slow variational evolution equations~42!–~45! for the
case when the driving term in Eq.~25! has the form$«0
1«1cos@C(x)2vt#%exp$i@f(x)2v0t)#% with constantv and
v0 , but slowly varying wave vectorsCx5k (x) and fx
5k(x). Also, we shall assume that the phase veloc
v/k (x) of the amplitude modulation satisfies the relati
v/k (x)52k(x). We shall see that this matching allows o
to excite a stable, adiabatically varying cnoidal solution w
a having the form of a quasiperiodic wave moving with t
velocity v(x)52k(x). In this purelyx-dependent limit we
set V5v5const andg50 in Eqs.~42!–~45!, yielding the
slow evolution system

mx52pl212k ~x!22pl21~«0a0A82«1a1A8!cosj,

jx5BKJA8p2 1
2 h2~«0a0B2«1a1B!cosj,

~55!
~J1KJRRK1 1

2 Bv/K2!x5«1a1sin m,

~vJR1B!x52~«0a02«1a1!sin j,

where, again, assuming the strongdoublephase locking, we
will replace cos(m,j)→1 and sin(m,j)→(m,j). In addition, as
for the standing waves, we shall viewmx , jx andB in Eqs.
~55! as small andO(«1/2). Next we recall thatK[k 1mx
and h[v2v/K'vmx /k 2;O(«1/2), so R5L(x)1vb/k
1O(«). Then, to lowest order in«, Eqs.~55! become

mx5K02k 1KR
0vjx /k ,

jx5Bp2 1
2 vmx /k 2,

~56!
~J01 1

2 Bv/k 2!x5«1a1
0m,

~vJR
01v2JRR

0 jx /k 1B!x52~«0a0
02«1a1

0!j,

where the objects with the zero subscript are evaluate
B50 and R5L(x)5k2(x)2v0 . Finally, we write A8
5Ā(x)1dA, where Ā is defined via K0@Ā(x),R(x)#
5k (x), view dA as beingO(«1/2), and linearize Eqs.~56!,
yielding

mx5K̄ĀdA1KR
0vjx /k ,

jx5Bp̄2 1
2 vmx /k 2,

~57!
~ J̄ĀdA1 1

2 Bv/k 2!x52 J̄x1«1ā1m,

~v J̄RĀdA1v2J̄RR
0 jx /k 1B!x52v J̄Rx2~«0ā02«1ā1!j,

where (̄ ) denotes evaluations atA85Ā(x), B50, and R
5L(x).

The autoresonant solution of Eqs.~57! corresponds to
small oscillations ofm andj around the slow averagesm̄ and
j̄ given by @see the RHS of the last two equations of Eq
~57!#

2 J̄x1«1ā1m̄[0, 2v J̄Rx2~«0ā02«1ā1!j̄[0.
~58!
y

at

.

Note that the smallness ofm̄ and j̄ requires the smallness o
x[s/«, wheres is the dimensionless parameter charact
izing the space variation of the wave vectorsk andk in the
driver. We shall assume thatx!1 in the following ~this is
our adiabaticity condition!, so m̄,j̄;O(x). Similarly to m
andj, the variablesdA andB are also viewed as oscillating
but having negligible averages since, as follows from
first two equations of Eqs.~57!, these averages areO(sx).
Then, for the oscillating components, Eqs.~57! yield

dmx5K̄ĀdA1KR
0vdjx /k ,

djx5Bp̄2 1
2 vdmx /k 2,

~59!
J̄ĀdAx1 1

2 Bxv/k 25«1ā1dm,

v J̄RĀdAx1v2J̄RR
0 djxx /k 1Bx52~«0ā02«1ā1!dj,

wheredm5m2m̄ and dj5j2 j̄. This linear system gives
the following local characteristic equation for the wave num
ber k of the autoresonant oscillations:

~c1k21e1!~c2k21e2!1c3k450, ~60!

wheree15«1ā1 , e25«0ā02«1ā1 , and

c15~ J̄Ā /K̄Ā!1 1
2 v/~ p̄k 2!,

c252 p̄212~v2/k !~ J̄RR2 J̄RĀK̄R /K̄Ā!, ~61!

c35 1
2 v2~ p̄k 2!22~112p̄k 2J̄RĀ /K̄Ā!~12k J̄ĀK̄R /K̄Ā!.

We observe that ifv50 ~this is the case of standing au
toresonant waves!, c350 and the solutions of Eq.~60! are
k1

252(K̄Ā / J̄A)«1ā1 andk2
25 p̄(«0ā02«1ā1), which coin-

cides with our previous results@see Eqs.~54!# for this case.
Since bothk1,2

2 are positive, the driven standing waves of t
NLS equation are stable. However, the positiveness ofk1,2

2

for thev50 case guarantees the stability of the autoreson
cnoidal waves for sufficiently small values ofv5v/k .

VI. CONCLUSIONS

We have studied the problem of excitation and control
cnoidal solutions of the NLS equation by driving the syste
by oscillations/waves with adiabatically varying paramete
We have used the autoresonance effect for the excita
purpose, i.e., the state in which the excited wave self-adj
its parameters to remain in an approximate resonance
the driver despite the variation of the driving frequen
and/or wave vector. Different scenarios of entering and s
taining the autoresonance in the NLS system were con
ered.

The simplest autoresonant solution of the NLS equatio
obtained if one starts from a small uniform initial conditio
drives the system by a wave of the form« exp$i@k0x2k0

2t
1f(t)#%, where the frequencyk0

22L(t) is slowly increasing
in time (L[df/dt, dL/dt,0), and passes the linear res
nance pointL50. Beyond this point, one excites a quas
periodic solution of form~see Sec. II! c5a0(t)exp$i@k0x
2k0

2t1u(t)#%, wherea0'L1/2 andu(t)'f(t), i.e.,c is phase
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locked with the driving wave. We have studied the stabil
of this solution with respect to spatially periodic perturb
tions and, in contrast to the plane wave solutions of the f
(«50) NLS equation, found a long-wavelength stabili
window for the autoresonant plane waves.

We have shown~see Sec. III! that the aforementioned
autoresonant plane waves can serve as boundary cond
for exciting autoresonantstanding waves of the formc
5a(x)exp(iL0t) in the NLS system. This goal is achieved b
using the driver of the form«(x)exp(iL0t), where «(x)
[«01«1cos@C(x)#% andk (x)[Cx is a slowly varying func-
tion of position. Therefore, the excitation of autoreson
standing waves requires forcing by a superposition of an
cillation and an adiabatically varying standing wave. W
have studied the autoresonance in this driven system an
the associated dynamical problem. Thedoublefrequency dy-
namic autoresonance in this problem and its relation to
driven NLS equation were investigated in detail.

We have also constructed Whitham’s averaged variatio
principle for the resonantly driven NLS equation~see Sec.
IV ! and used it for testing the temporal stability of the sp
tially autoresonant standing waves as well as for study
autoresonant excitation and control of more general, cno
waves. The averaged variational principle yields a system
slow evolution equations~42!–~45! describing thespace-
th
-
e

ns

t
s-

in

e

al

-
g
al
of

timeevolution of two pairs of canonical actions and angles
the associated dynamical problem.

We have studied several applications of the avera
variational theory in Sec. V. For instance, we have sho
that the autoresonant standing waves are stable with res
to sufficiently slow temporal modulations. We have show
that more general autoresonant cnoidal solutions in
driven NLS system can also be excited by using plane
toresonant solutions as a boundary condition. However,
driver, in this case, must have the form$«01«1cos@C(x)
2vt#%exp$i@f(x)2v0t)#%, where the wave vectorsCx5k (x)
andfx5k(x) are both slowly varying functions of position
Thus the driver comprises asuperpositionof waves with
adiabatically varying parameters. Furthermore, we have s
that, while the frequenciesv and v0 in the driver can be
arbitrary, the stability of the autoresonant cnoidal waves
quires an additional phase velocity matching, i.e.,v/k (x)
52k(x), in the system.
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