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Autoresonant solutions of the nonlinear Schrdinger equation

L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
(Received 9 March 1998

Resonant driving of the nonlinear Schimger (NLS) equation by small-amplitude oscillations or waves
with adiabatically varying frequencies and/or wave vectors is proposed as a method of excitation and control
of wave-type solutions of the system. The idea is based on the autoresonance phenomenon, i.e., a continuous
nonlinear phase locking between the solutions of the NLS equation and the driving oscillations, despite the
space-time variation of the parameters of the driver. We illustrate this phenomenon in the examples of exci-
tation of plane and standing waves in the driven NLS system, where one varies the driver parameters in time
or space. The relation of autoresonance in these applications to the corresponding problems in nonlinear
dynamics is outlined. One of these dynamical problems comprises a different type of multifrequency autoreso-
nance in a Hamiltonian system with two degrees of freedom. The averaged variational principle is used in
studying the problem of autoresonant excitation and stabilization of more general cnoidal solutions of the NLS
equation,[S1063-651X98)07109-9

PACS numbds): 03.40.Kf, 52.35.Mw

I. INTRODUCTION etc) in space-time. Thus variation of the parameters of the
driver allows control of the state of the driven system. The
The nonlinear Schidinger equation autoresonance phenomenon has its roots in nonlinear dynam-
ics and a number of dynamical applications can be found in
|t Pt | 9] 24=0 ) the literature. These include particle accelera{@rs9], ex-

citation of atoms[10] and dissociation of moleculgd1],

is one of the most important equations of nonlinear physics¢ontrolled transition to chaofl2], and autoresonance in
It admits a variety of solutions, a well known example beinghigher-order dynamical systenj#3,14. We shall also see
the cnoidal wave[1] #(x,t)=a(x—uvt)explilkyx—woil}, the dynamical connection in the present worl_<, which is de-
wherev =2k,, wo=k3— Ao, and the real functioa(s) sat- \é%tﬁr'(zuitr?g::?Nd{g)gegﬂé?ifsoname in the driven nonlinear
isfies The scope of our presentation is as follows. In Sec. Il we
shall consider the simplest autoresonant solutions in our sys-
tem, i.e., autoresonant plane waves. We shall see that these
_ o . solutions can be excited by driving the system by an external
The simplest .reallzatlons of me cr_10|dal waves are planep|ane wave with slowly varying frequency. In Sec. Ill we
constant amplitude waves= A5 expifkox—wgt]; (here and  ghq| study a more complex problem of excitation of standing
in the following we assumé ,>0) and the standing waves \ayves. We shall show that excitation of autoresonant stand-
y=a(x)exp{Aqt). In the present work we shall study the jhg waves requires using a superposition of an oscillation
question of adiabatic excitation and control of the cnoidalgng 5 standing wave in the driver. In Sec. IV we shall further
solutions by adding an external resonant driving on the rightyeneralize our theory for studying the excitation and stability
hand sideRHS) of Eq. (1). We shall find a proper choice of of more general autoresonant cnoidal waves in the NLS sys-
the driving oscillationgwaves for this purpose by using the tem. wWe shall approach this problem by constructing an av-
idea of autoresonance in the system. A similar problem wagraged variational principle for the phase locked driven NLS
studied recently for driven systems of a certain general classquation. Several applications of the variational theory are
described by a variational principf&]. Investigations of par- given in Sec. V. Finally, Sec. VI presents our conclusions
ticular examples of autoresonant solutions exist for thegng Table | gives a glossary of symbols and the locations
Korteweg—de Vrieg2—4] and sine-Gordof5] equations as \here these symbols appear for the first time.
well as for coupled sine-Gordon equatidieg.

Autoresonance is a nonlinear phase locking phenomenon,il. TEMPORAL AUTORESONANCE: AUTORESONANT
taking place when a resonantly driven nonlinear system re- PLANE WAVES
mains phase locked with the driving oscillatidar wave ) ) . . .
despite the adiabatic variation of the frequency and/or wave [N this section we illustrate the idea of autoresonant exci-
vector of the driver. The phase locking is due to the tendenc§Ation of a nonlinear wave by studyirigmporal autoreso-
of the driven nonlinear system to preserve the resonance JJ2nce in the NLS system. Consider the driven NLS equation

ag— Aga+as=0. 2)

slowly adjusting its statéenergy, frequency, wave vector, Lt ot | W2g=¢ exp[i[kox—kgt+¢(t)]}, @)
where the RHS represents a small, constant amplitude (
*FAX: (972-2-651-2483. Electronic address: <1) plane wave having wave vectky and slowly varying
lazar@vms.huji.ac.il frequencykS—A(t), where A (t)=d¢/dt and all variables
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and parameters are dimensionless. We are interested in fingroblem, with  the
ing solutions of Eq(3) that are phase locked with the driver.
Therefore, we write the solution ag=a(x,t)exp{i[kox—kat
+6(xt)]}, where Im@,0)=0. Then f=a exp(d) satisfies
i(fi+of)+ T, +]|f|2f=e exdié(t)], where, as in Sec. i

L. FRIEDLAND

TABLE I. Glossary of symbols.

Symbol Definition

o a solution of the nonlinear Schiimger equation(1)

a,kg,wq the amplitude, wave number, and frequency of a cnoidal jaew Eq.(1)]

v the velocity of the filling phasgbelow Eq.(1)]

&,0,A the amplitude, phase factor, and associated frequency of the @ige(3)]

() the phase mismatdteqg. (4)]

l,6,H the canonical action, angle, and Hamiltonian in the dynamical problem associated
with temporal autoresonang¢below Eq.(5)]

N\ the phase and wave number of the spatial modulation of the dbesow Eq.(7)]

Vet the effective potentidlEq. (9)]

J,0;B,¢ the radial and azimuthal action-angle pairs associated with the spatial
autoresonancgbelow Eq.(11)]

S the generating functiofbelow Eq.(12)]

A the energy parametéEq. (13)]

u,v the radial and azimuthal solutiofi§gs.(15) and(16)]

N(J,B),B(J,B)

ap,1

the radial wavelength and azimuthal wave numlesiow Eq.(16)]
the amplitudes of the zero and first harmonics of radial oscillations
[below Eqg.(17)]

“ the mismatch of the radial oscillatiofigqg. (19)]

K,w the wave number and frequency associated with the driving phase and
amplitude, respectiveljbelow Eq.(25)]

L,Lg the Lagrangian$Eg. (27)]

QK the frequency and wave number associated with the radial angle variable
[below Eq.(28)]

v.8 the frequency and wave number associated with the azimuthal angle variable
[below Eq.(28)]

L,Lo1 the averaged Lagrangian and its compon¢its (29)]

h the velocity parametdibelow Eq.(30)]

R the frequency parametgbelow Eq.(33)]

V,K the frequency and wave number of the slow modulatidredow Eq.(51)]

di_4 the coefficients in the dispersion relati@®P)

Ci_3 the coefficients in the characteristic equati6g)

Hamiltonian H(l,6,t

=|2/2. The latter describes an oscillator of
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)=12/2

+2¢1Y%cos(— ¢), wherel =a? and d serve as the canonical
action-angle pair of the unperturbed Hamiltoni&ty(1)
frequency
dHg/dl =1, while the perturbed HamiltoniaHl(l, 8,t) has

=2ky. By separating the real and imaginary parts in the lasthe characteristic form, known as tlsengle resonance ap-

equation and defining the phase mismadet 6— ¢(t), we  proximationin the standard theory of nonlinear resonance

obtain the equivalent pair of real equations [15], but for the case of a slowly varying frequengy
=A(t) of the driving oscillation. A similar adiabatically
driven dynamical problem was studied in REgff6]. The au-

4 gl . L

toresonant solution is obtained when the driving frequency

A(t) passes linear resonance with the unperturbed oscillator,

. ) o . i.e., the pointA = 0. We illustrate this solution of Eq$5) in

First, we seek the solution of E¢3) satisfying auniform Fig. 1, showing the numerical results for the amplituale

initial condition y(x,t=tg)=1q, where |yo|<1. Conse- : ; :
guently, we study solutions of the purely time—dependengoF:gs' j(g)(])sagtrj]dthe phase mismateh(mod 2r) [Fig. 1(b)]

limit of Eq. (4):

a;,+va,+ad,,+2a,P,=—¢ sin P,

a(®+vd,)—a,+ad2+Aa—a’=—¢ cosd.

A(t)_ Aos"'(%’ﬂt/-ro), _T0>t>T0
(5) Ao, i:>T0,

whereT,=200 andA,=2. We have used the initial condi-
subject to the initial conditiona(ty) <1 and®(t,)=®, (an  tions(atty=—Ty) a=0.01 andd = 7 in these calculations.
arbitrary constant Equations(5) can be interpreted as Figure 1 demonstrates the initial phase trapping stage, at
Hamilton’s equations for a one degree of freedom dynamicak 0, where the phase mismatdi{mod 2m) settles near zero.

a;=—¢ sind,

®,=a2— A(t)—(e/a)cos D,
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FIG. 1. Autoresonant excitation of a plane wave in the driven NLS system. The solid linedahtiw amplitudea of the wave andb)
the phase mismatof?(mod2r). The dashed line represerifsr t>0) the smooth autoresonant solutiph(t)]¥? for the amplitude.

At later times, after the trapping, one can see a typical aunant solution. Thus the autoresonant driving stabilizes the

toresonant evolution of the system, as the nonlinear freplane wave solutions with respect to sufficiently slow spatial

quency shifta® approximately follows the driving frequency modulations.

A(t) (we show the values dfA (t)]*2 by the dashed line in

Fig. 1(a)]), despite the time variation of the frequency. One Il SPATIAL AUTORESONANCE: AUTORESONANT

can also see that, in autoresonance, the system performs STANDING WAVES

small (and slow autoresonant oscillations around the quasi-

equilibrium solutions. These oscillations comprise an addi- In this section we consider the boundary value driven

tional characteristic signature of autoresonance and their freNLS problem

quency scales as~+2e¢a [16]. In conclusion, at final

evolution times, wher\ approaches\,, one arrives at the Y+ Pt | ]2 =e(X)exp(iAgt), (7

simplest, plane cnoidal wave solutiafra, exp[i[kox—(ké

—Agt]} in the driven NLS system with the amplitud® ~ where, at some positiofisay, x=X,) and for all times,

~ A controlled by the final value of the driving frequency. y(x,,t) is the stationary autoresonant plane wave of the pre-
At this point we recall that, so far, spatial variations haveceding section fok,=0 and constant valua , of the driv-

been suppressed. Now we remove this restriction and conng frequency. Thus, on the boundary(xg,t)

sider the question of stability of the temporally autoresonant= g exdi6,(t)], whereaO=Aé/2+ dag, Op=Agt+ 56, (i.e.,

s_ol_utlon with respect to sm_all spatial pe_rt_urbatmns. We shallp ;= g,— Agt= 86,= 5D,), andag,=Po,= 0. Note that we

limit the analysis to studying the stability of the uniform ajlow small, but constant, perturbationa, and 5@ in the

autoresonant solution at times beyomg, when the time  poundary conditions, so the following analysis tests the sta-

varying part of the driving frequency arrives at its constantyjjity of the autoresonant solutions with respect to these per-

valueA=A,. We again seek solutions of Eqd), but now  tyrbations. Also, in contrast to E(B), where the amplitude

aand ¢ are functions of space-time. The systé#is satis-  of the driving oscillation was fixed, we add a quasiperiodic

fied by ®=®=0 anda=a given bya®-Aja—e=0, i.e.,  spatial modulationin the RHS in Eq(7) and uses(x)=¢,

E%Aé’z (note that® anda are the time averaged valuesdf  +&,co§¥(x)], where #(x)=V, is a slowly varying wave

andain Fig. 1 att>T,). By perturbing this steady state, i.e., number of the modulation. One could choose a different

writing  ®(x,t)=d+ sd(x,t)= 8D (x,t) and a(x,t)=a form of quasiperiodic modulation; the only requirement

+a(x,t), where 6®,5a~exdi(kx—t)], and linearizing Would be(see below a sufficiently large average af(x)

Egs. (4) around® anda one finds the dispersion relation over one spatial oscillation. Thus we drive our system by the
superposition of an oscillatioagexp(Agt) and a standing

(v—kv)?=(k?>—¢ela)(k?—2A,—3¢/a). (6) wave g,cosV(x)exp(Aqt). We shall see that thislouble
. driving is essential for stabilizing the resulting autoresonant
Equation (6) predicts an instability fore/fa<x?<2A, solution.
+3e/a. Nevertheless, in contrast to the free<{0) plane Now we write the desired solution of Edq7) as ¢
wave solution, which is always unstable at sufficiently small=a(x)exp{i[ Agt+P(X)]}, wherea(x) and ®(x) satisfy the
k, there exists atability windowx?<e/a for the autoreso- spatial limit of Egs.(4) with e=g(x), A=Ag, andv=0:
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FIG. 2. QuasipotentialV z(a) versus X=a cos® and Y
=a sin®. The initial position of the quasiparticle, i.eg~A3?,
d~0, is shown by a solid dot. The arrow indicates the direction o
the uniform fielde acting on the quasiparticle in the dynamical
analog.

ad,,+2a,d,=—¢e(x)sin o, ®

ay—ad2— Aja+ad=g(x)cosd.

The rest of this section is devoted to studying autoresonant

solutions of this purelyx-dependent system. The temporal
modulations of these solutions will be included in Sec. IV.

We proceed by observing that Eq8) comprise a two
degrees of freedomdynamicalproblem, wherex plays the
role of “time.” Indeed Eqs.(8) are Lagrange’s equations,
when the Lagrangian ik(a,a,;®,®,)=Ly+e(x)a cosd
and

Lo(a,a.;®,)=3(a;+a’®y) +(3A0a°— ta*).

9)

Now, for convenience, we make the transition from the La-
grangian to the Hamiltonian formulation. To this end, we

define the canonical momentp®=4L/da,=a, and p?®
=gL/9d,=a’d, and write the associated Hamiltonian

H=a,p?+®,p®—L=Hy+H,, (10)

where

Ho=3[(p®)?2+(p®/a)?]+ Ver(a), D

H,=—¢e(x)a cos®,

andVg(a)=—3Asa’+3a*. The unperturbed Hamiltonia,,
describes theglanar motion of a quasiparticle of unit mass
under the action of aentral force given by the potential
V- The variablesa and @, in this interpretation, play the
roles of polar coordinates of the quasiparticle, wipife® are
theradial andangularmomenta of the quasiparticle, respec-
tively. Then the perturbed pakt; of the Hamiltonian can be

L. FRIEDLAND
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section we study autoresonant excitation of the radial oscil-
lations of thistwo-dimensionabscillator. This problem dif-
fers from the autoresonance problems studied previously by
the presence of the secomdsonant(azimuthal degree of
freedom. The question of autoresonant stabilization of the
azimuthal motion will be discussed. The following analysis
is also important as a step for studyifig Sec. I\) a more
general, space-time autoresonance in the driven NLS system.
The most convenient description of autoresonance in this
two degrees of freedom system is obtained by transforming
to the action-angle variables of the unperturbed Hamiltonian
Hy. This Hamiltonian is independent @b (® is a cyclic
variable and therefore the angular momentpfi=B re-
mains constant in the unperturbed problem. We use this fact

and make the canonical transformation of variables

(a,p%;®,B)—(0,J;£,B) via the generating function

F(a,J;®,B)=S(a,J,B)+PB. (12
Here S(a,J,B)=[?p*[A(J,B),B,a’]da’, where
p* (A,B,a) is defined as the solution of
Ho=3[(p%)?+(B/a)?]+ Vei(a)=A (13
for p?, and the radial action variablkis given by
J(A,B)y=(2m) "1 fj; p*(A,B,a)da. (14

Also, we have rewritten Eq14) asA=A(J,B) in the defi-
nition of S(a,J,B). The generating functio(l2) defines the
angle variable conjugate to the actiah i.e., ®(a,J,B)
=JF/9J=dSl3J or, by inversion,
a=U(0,J,B). (15

Similarly, the canonical angle variable conjugateRas &
=9JF/9B=d—-V(a,J,B), where V(a,],B)=—-9S/9B=
— [#(9p*/oB)da’=V(0©,J,B), so

d=£(+V(0,],B). (16
Note that the change &a,J,B) during one period of radial
oscillations isAS=2wJ, so ® changes by 2 and thus
U(0®,J,B) is 27 periodic in ®. On the other hand, the
change oV over an oscillation iAV=—3J(AS)/dB=0, so
V(0,J,B) is also 2r periodic in©.

Since the generating functiaqii2) does not depend ox
explicitly (recall thatx is our time variablg the transformed
unperturbed Hamiltonian is simplH,=A(J,B). Conse-
quently, in the unperturbed problem, the actidnB and the
frequencies 0,=9JA/dJ=2#7/\(J,B) and ¢&,=0A/B
= (J,B) remain constant. Note th#t describes aonstant

viewed as representing the interaction of the quasiparticlengular velocity component characterizing the evolution of

with an external,uniform quasiperiodic force of strength
e(x) acting in the® =0 direction in the plane. We illustrate

this useful interpretation in Fig. 2, showing the effective po-

tential as a function of the Cartesian coordinat¥s
=a cos® andY=a sin® for the case\ ;=2. Note that the
initial position of the quasiparticle in th¥-Y plane, ag
=AY?+ say, ®o=6d,, corresponds to a near equilibrium
(minimum) point in the effective potential. In the rest of this

the cyclic variable® in our central force problem, while
V(0,J,B) is the component ob oscillating with the period

of the radial oscillations. Next we express the perturbed part
of the HamiltonianH,;=—¢(x)a cos® in terms of the
action-angle variables of the unperturbed problem:

Hi=—(ggt+e.cos¥V)U(0,J,B)cogé+V(0,J,B)].
(17)
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Here, because of the periodicity in®, we can under certain conditions, the system enters the autoresonant
expand U cosV=3,,(J,B)expin® and U sinV  regime. In autoresonance, due to self-adjustment of the ac-
=3,8,J,B)exp(n®). Finally, we make the double resonancetion J, the approximate resonance conditiok°(J)

approximation, i.e., assume a persistaggproximatedouble ~ =27/\°(J)~£(x) is preserved continuously, despite the
resonancg€~0 and® — ¥ ~0 in the system and, by neglect- variation of £.
ing all the nonresonant terms in E(L7), replace the per- Finally, we include the azimuthal perturbations and show
turbed partH; of the Hamiltonian(10) by that they can be stabilized in our system. Indeed, assume that
5 . B and ¢ do not vanish, but remairO(¢¥? [¢ being
Hi=—{eoao+ Rz a:e"® ¥ ]}cos ¢ max(eg,e;)] continuously (we shall verify this assumption
i . later). Then, for sufficiently s , ine,
+{eoBo+Re £18: @~ V]ksin £ Eqsi?(lg) o, for < y smallu, to lowest order ine

Here we shall also assume that the perturbed motion is such J.=e.a%in
that, in addition to&, V remains small for all time§i.e., the x— E10ST K (21)
cyclic variabled® = £+ V is always smajland, consequently, — 10

2 . . px=K(J) =#£(X),
neglect the part oH; associated witV. Then our double
resonance approximation for the transformed Hamiltoniaryng
becomes

~ Bx=—(gpap—e1a9)sin §,
H(©,£3,B;x)=A(J,B) —{eoao(J,B) +e1a:(J,B) (22

X cog§ ® —W(x)]}cosé, (18) &=p(J,B).

Equations(21) are independent d and ¢, so the autoreso-
nant evolution of] and w is similar to that described previ-
ously. On the other hand, by differentiating the second equa-
Yon of Egs. (22) and substituting the first equation in the
result, one obtains

&~ —(8gap—e1aq) Besin &. (23

Therefore, sincg8gz>0, we have an oscillating evolution of
(19) ¢, as long asga¢>eq1a4, and the characteristic spatial fre-

where we have choséd cosV to be an even function dd,
SO a4 is real.

At this stage, we proceed to studying the evolution give
by Eq.(18). The corresponding Hamilton equations are

Jy=e1a,SIin u COSé,

/.LX=277/)\(\],8)_4’()()_[SoaOJ_SlalJCOSM]COS§

B,= —[eoao—&,@,C0S u]sin &, quency of these oscillations i8°=[(gqao—e1a1) Be]*>
This frequency varies adiabatically as the acti@wvolves in
£=PB(J,B)—[egaps— £1a15C0S 1]COSE, the autoresonance according to E@L). Then, if ¢ is small

at the boundary, it remains small at later times provided the
where we have introduced the phase mismaich 7+ © variation of J is sufficiently slow. Also, by integrating the
— W of the radial oscillations and substituted the wave vectofirst equation of Eqs(22), we find the assumed scalirig)
of the driving modulation¥,=.(x). The boundary condi- ~(gqaq—e1a7)/ké~0(c¥?). Note that the characteristic
tions for this system ar@= 6J,<1 (recall that the quasipar- frequencyx?* of the oscillations of differs from that of the
ticle starts near the minimum of the effective potential well,oscillations ofu. Indeed, by differentiating the second equa-
whereJ=0), u=7—"V (we have se®=0 at the bound- tion of Egs.(21) and substituting the first equation in the
ary), B=0, and ¢£=6®,. Next we observe that Eq$19)  result, one obtains
allow the azimuthal equilibrium witlB = £=0. Indeed, from
Eq. (14), for small B, A(J,B)=A°J)+0O(B?) and, simi- tn= €101 K Sin =Ky . (24)
larly, ag 1= a$ ,(J)+O(B?). Thenp, agg, anda,g all scale s o
as O(B) and thus vanish aB=0. Therefore, the last two The_refore, smcd_<J<0, the chargcterl_stlc frequoencoy of the
equations of Eqs(19) are satisfied trivially forB=¢=0, radial phase mismatch oscillations ig*~(e;a3|Kj|)*?,

while the first two become which differs fromx¢, but bothx* and«* scale as:*2. Note
that, for small values of the radial actidin the Fourier co-
Jy=e,a9sin u, efficient ag~a,, while a;~JY?<a,. Therefore, the pres-
(200  ence ofaq in Eq. (23) is essential for stabilizing the azi-
Mx:277/7\0(3)—/(X)—(SoagJ—SWQJCOSM)- muthal motion in the initial autoresonant excitation stage.

Since the presence of the coefficient in our theory can be
This system has the same form as the evolution equations féfraced back to the presence of the nonvanishing spatial aver-
dynamic autoresonance in the one degree of freedom profage of the modulations of the driver, this average is neces-
lem described in Sec. llcompare to Eqs(5)]. Therefore, sary for the azimuthal stabilization. One can also give a me-
one can expect to find the phase locked solution of(2§).  chanical interpretation of the azimuthal stabilization. Indeed,
similarly to that described in Sec. Il. In other words, if, at the the presence of the constant foeggin the® =0 direction in
boundaryJ is sufficiently small, the trapping into resonance our driven dynamical problem given by the Hamiltonidg)
(u—0) takes place asf(x) passes the linear resonancecan be regarded as due to the additional potential
pointx, , whereZ(x,)=2/\°(0), while beyond this point, —g&ga cos®=—ggX, which simply tilts the effective poten-
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FIG. 3. Autoresonant excitation of standing wave solutions of the NLS equat@riEhe amplitudea and the quasiperiodic modulation
of the driverM = —&,cogW(x)] versus position. One observes the autoresonant phase locking in the driven gystme. phaseb and the
energyA versus position. These results demonstrate the azimuthal stability of the autoresonant solutions and the presence of the character-
istic autoresonant oscillations of the solutions around their slowly evolving averages.

tial shown in Fig. 2 around thé=a sin ® axis, lowering the IV. AVERAGED VARIATIONAL PRINCIPLE:
X>0 part of Vg, thus creating docal minimumin the po- SLOW EVOLUTION EQUATIONS

. _ __Al2 . . L.
tential atY=0, X~Ag". In this section we study the boundary value problem simi-

We conclude this section by numerical examplesiyy to that described in Sec. Ill, but use a more general driv-
presented in Figs. 3 and 4. We solve E/) for ing term, i.e., consider solutions of

e(X)=¢gg+e,c0§V(X)], €01=0.04, A(X)=V¥,=49

+A£ sin3mxIXol, #o=(2A)Y2 A4=0.4¢,, Ay=2, and L+ gt |12 =2 (x,Dexdie(x,1)], (25
Xo=500, subject to the boundary conditio@ x,= —200)
6ay=0.005, 6®,=0.02, andag,=Py,=0. The results of
these calculations for the amplitudeare shown in Fig. &).

We observe the efficient excitation of the radial oscillations
of a as one passes the linear resonance pocind. We also
show the phase-shiftedby =) quasiperiodic partM
=g,c0§V(X)—m]=—¢,c0s¥ of the modulation of the
driver in Fig. 3a) and notice the phase locking of the oscil-
lations ofa with those ofM. The phase locking reflects the _ _ _

predicted spatial autoresonance in the system. We also Cavﬂ:je(;c/edX,tl)a(lzatk(f)(;,lt()z(xgpngg; Thl()—:-();)pas: (;?11(1 thlfa();i)me

culate® and the en¢fgﬁ:%(a§+az®§)+Veﬁ(a) and show  gependences i and ® are now included in the problem.
these results in Fig. (B). One can see the autoresonantTime dependence enters via the modulation of the amplitude
growth of the averaged energy, as the system self-adjusts it the driver and/or time-dependent boundary condititats
parameters to stay in resonance with the driver. Figure 3 alsp—yx ) a,=[A(xo)]Y%+ dap(t) and dy=dD,(t), while
illustrates the aforementioned slow autoresonant oscnlatlon§0x:q)0x:0_ An important ingredient of the following
(around smooth averagesf ® and A with two different  theory is the assumption of the presencestufw and fast
spatial frequencies® and«*, respectively. Finally, in Fig. 4 space-time scales in the problem. Let only the slow time
we present the solutiond and A for the same parameters variation be present in the boundary conditions. On the other
and boundary conditions as in Figihd, but with ;=0.01.  hand, we assume that bo#(x) — wot and¥(x) — wt in the
One can see the development of the azimuthal instabilitgriving term are varying on the fast space-time scale, but the
when one violategsee abovethe conditionsgag>e,a; at  frequenciesw,w, are constant, while/(x)=d¥/dx and
x~200. The phase locking and the autoresonance discoh{(x)=d¢/dx are slowly varying functions of position. The
tinue beyond this point. This completes our illustration of thepurpose of the theory is to show that a proper choice/(of)
adiabatic resonant excitation of standing waves andk(x) yields a stable, adiabatically varying cnoidal solu-
=a(x)exgi(Agt+P)]=a(x)exp(Ayt) in the driven NLS sys- tion with the amplitudea of the form of a quasiperiodic wave
tem and we proceed to the problem of autoresonant excitanoving with the velocityv (x)=2k(x). We shall see that,
tion and stabilization of more general cnoidal waves. for exciting this solution, one needs to matefix) to the

where o(X,t)=¢(X)—wot and e(Xx,t)=gy+e,c03W(X)
—ot]. We write ¢y=a exp(6) and replace Eq(25) by the
pair of real equationfsee the similar systei®) in Sec. Il

aitva,+ad,,+2a,d,+ sav,= —(X,t)sin ®,
(26)
a(®+vd,)—ay+ad+Aa—a’=—sg(x,t)cosP,
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FIG. 4. Phaseb and energy& versus position for the same parameters and boundary conditions as inl#igo8 with smaller value
of £y=0.01. The figure shows the azimuthal instability of the autoresonant solution when the corgitign ¢, is violated atx
~ 200, destroying the phase locking and the autoresonance in the system.

phase velocityw/#(x) of the modulation of the driver, i.e., a=U(0,x,t), dP=£&(x,t)+V(0,x,t), (28
to impose the condition Kx)#(x)=w. This condition
agrees with the results of Sec. Ill, studying autoresonantvhere the explicitly showrx,t dependence is slow, while

standing waves. Indeed, for the standing waves0 and ©O(x,t) is a fast angle variable and bdthandV are assumed
therefore purely spatial modulations£0) of the external to be 27 periodic in®. Also, one assumes that the frequency
forcing used in Sec. Il satisfy the above-mentioned condi{)(x,t)=—®, and wave vectoK(x,t)=0,, as well as the
tion. Finally, note that in the case of standing waveéx) derivativesy(x,t)=— &, and B(x,t)=¢, are slow functions
must be sufficiently slow, but otherwise arbitrdiy contrast  of space-time. The secular componeénin @ (the term of
to the traveling waves this type is absent in) is necessary for properly representing
The assumed presence of the two different space-timthe potential field and the quantitigsand 8 are the slow®
scales allows one to develop the theory of autoresonance @verages of the derivatives @ We have already seen these
our driven system by using Whitham’s averaged variationalngredients in the theory when studying standing autoreso-
principle [17]. To this end, we observe that Eq&26) nant waves in Sec. Ill.
can be obtained from the variational principle At this stage, we introduce the averaged variational prin-
8ffL(a,a,;®,d,,P,)dx dt=0, where the two-field La- ciple [17], i.e., instead of the original variational principle,
grangian is of the fornL =L,+e(x,t)a cos® and the un- usedf[L dx dt=0, wherel is the averaged Lagrangian
perturbed part is

2w
L=(27 —1J LdO=Ly+L (29
Lo(a,a,;®y, D) =3[ai+aX(Pi+ D +vd,)] =), o

+3Aa%—za. (27)  split into the unperturbed part ar@(s) perturbation. The
averaging in Eq(29) is defined by holding the slow vari-
Note that Eq.(27) does not depend on the fief, but only  ables in the integrantixedat a given position and time. The
on its space-time derivatives and therefore, in the unperealculation ofLy ; is the next necessary step in the theory. As
turbed problem® is a potential (the analog of the cyclic mentioned earlier, we neglect the slow variations of all the
variable in the dynamical problemThe averaged variational dependent variables and parameters in this calculation. We
principle for studying autoresonance in general driven two-use ®,=8+KVg, to expressVo=K }(®,— ), and &,
field problems withL, of this type, but for a different form =-—y—QVg=35—(Q/K)P,, where 6=—y+(Q/K)B.
of the perturbation, was constructed recef®y. Although  Then the unperturbed Lagrangié2i) can be written as
we can use many ingredients of that theory in our applica-
tion, we shall repeat the main steps of the construction, for  Lo=3(a2+a?®2)+ ha?d,+ (A + §)a’—1a*, (30)
completeness.
As a starting point, we introduce the following two-scale whereh=v — /K is thevelocity mismatctand(, K, and §
representationof the solutions[compare to Eqs(15) and are evaluated at their locéstill unknown values. Now we
(16) in the dynamical problem in Sec. Il observe that, similarly to the cagse==46=0 studied in



3872

Sec. lll, the unperturbed LagrangidB0) describes a two
degrees of freedom dynamical problem, wha&rplays the
role of time. Therefore, again, in solving thdynamical

L. FRIEDLAND

PRE 58

AMA',B,R)= ff;{2[A’—%(B/a)Z—veﬁ(R,a)]}—l/Zda
(38)

problem[the solution is necessary for performing the aver-
aging in Eq.(29)], we use the Hamiltonian formulation. We s the wavelength associated with the radial oscillations and

define the usual canonical momenta

a=glL,/0a,=a,,

p 0 X X (31)
pP=0dLo/I®,=a%(D,+3h)

and observe that, since E¢B0) is independent ofb, p?
=B(x,t) is a slow variable. Next we write the unperturbe
HamiltonianH,=a,p?+ ®,B—L, or, after some algebra,
Ho=3[a5+(B/a)?]— 3hB+ V@), (32
where
Ver(a)=—zRa’+za’ (33

andR=A — y+ (v—h)8— h2. Since only the slow space-

(- a=(2m) H[E7(-+)dO.
Next we calculate the perturbed part

L1=({eo+e10§ ¥V (X) — wt) [}U cog£+V))ay,

of the averaged Lagrangi@@9). By making the same double
¢ Fesonance approximation as in deriving the perturbed part in
Eqg. (19), i.e., by assuming that and £ are continuously
small and that the phase mismatgk=0® — (¥ — wt) + 7 is
slow (this is our phase locking assumptjpme find
L1~ (eggag— &1a1COS 1)COSE, (39
where the coefficienta, ; are again associated with the zero
and first harmonics in the Fourier expansion
U(®,J,B)cosV(0,],B)==,a,(J,B)exp(n®). Thus the aver-

time dependence enters the Hamiltonian explicitly, the Naged Lagrangian in the driven NLS problem of interest be-

ergy Ho=A(x,t) is the second slow dependent variable i
the problem, in addition t@(x,t). Now, according to Eqg.
(32), the fast spatial variation dd in the unperturbed prob-
lem can be found by solving
3[az+(B/a)?]+Ver(@)=A’,

A'=A+1hB. (34

Ncomes
L=KJ(A",B,R)—A’+B(B+1h)
+(ggag— €101COS w)COSE. (40

At this stage, we can write the variational evolution equa-

Equations(34) show thata can be interpreted as the radial {jons in our problem. We observe that the averaged Lagrang-
component of the planar motion of a quasiparticle of unitj, depends on four field variables, i.€= £(A’;B;0,0,

mass, energy@’, and angular momentu® under the action
of the central force characterized by the potentidl;. Note
that if B, h, B, and y are all small, this planar motion is
nearly the same as that studied for spatially autoreson
oscillations in Sec. ll[see the Hamiltoniaf11)].

At this point, we identify the fast variabl® in Eq. (28)
with the canonical angle variable of the radial oscillations
the unperturbed dynamical problem described ab(ihe

motion in the quasipotentidly;) and average the expression

Ho=ap2+®,B—L,=A’—1hB with respect td® between
0 and 2, yielding

£0=KJ(A’,B,R)—A’+B(,B+%h), (35
where[compare to Eq(14)]
J(A',B,R)=(2m) ! 45 {2[A"—}(Bla)?
—Ver(R,a) ]} da (36)

=K,0,=—-Q;¢&,&=8,6=—7v). By taking the variations

in 8f [ £ dx dt=0 with respect to these dependent fields, we

obtain four evolution equations. For example, the variation
afith respect toA’ yields

KJAr—1+(soaOAr—elalArCOS,u)COS§=O (41)

in
or, since u,=K—/£(x) and Jy,=(2m) \(A’,B,R) [see
the first equation of Eq¥37)],

=27\~ 1= £(x)

— 27N Yegaon — 110/ COSL)COSE.  (42)
The variation with respect toB gives KJg+B+3h
+ (ggapg— e1a15C0Su)C0sE=0 or, by using the second
equation of Eqs(37),

£=BKJa(a ?)a— 7h— (0@ —£1215C0S 1)COS é:( )
43

is the canonical action variable associated with the radial
oscillations. Later we shall use the following partial deriva- Finally, the variations with respect © and ¢ yield

tives of the action:
Ja=(2m) \(A",B,R),
Jg=—BIa(a Aa, 37
lr=0.54(a%ay,

where

(J+KJIgRc+ 3BO/K?),— (KJIgR(— 3B/K),
=g,@,C0S €& sin u (44)
and

(QJIr+B)yx+ (KIg)=—(ggap—&1a;C0S u)sin €,
(45
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whereJy is given by the third equation of Eq&37). Equa- ‘]%A)’(q—(M)’l(B—‘]th)twslagﬂ,

tions (42)—(45) are the desired evolution equations for study-

ing the autoresonant cnoidal wave solutions of the driven Bx+/(~]0 AL+ 3880~ — (sgal—£1a9)¢
\YRA! .

NLS equation.

Here we have used the expansionri2 '=K(A’,B,R)
V. APPLICATIONS OF THE VARIATIONAL APPROACH ~K%— yK&, while p’=(a~?),, and all other objects with
the zero subscript are evaluatedBat 0 andR=A.

. o N _Now we observe that Eq$47) have a trivial solutionu.
As a first application, we check the transition to the purely_ ¢=B=0 andA’=A given byK°(A)—#=0. This is the

x-dependent case studied in Sec. Ill. This transition is 0bgpace-time averaged autoresonant solution described in Sec.

A. Transition to the purely x-dependent case

tained by settind), v, », v, and all the time derivatives in | |y studying the stability of this solution, we add a small
Egs.(44) and (45) to zero. The resulting system is perturbatiorA’ = A+ SA and linearize Eq947) with respect
=27\ 1= A(x) to SA. Then the first and third equations in this system be-
come
_277)\71(800/0Ar_81C¥1A/COS/.L)COS§, — —
px~Ka6A+ KRy, (48)
&x=—KJg—(goaop— &1@1pCOS ) COSE, — L — —
(46) InOAH(26) H(B=Jpu)i~erarn, (49

J,=g,a,C0S € Sin u, _
K= £101008¢ H where () means evaluations #&’'=A, B=0, andR=A.

The remaining two equations of Eg&l7), to lowest order,
remain the same, but with the coefficients evaluated at
Here, on the RHS in the first equation of Eqgl6), i.e.,
one can replace -()a=Ja (- );=N2m) (-);.

Also, in the second equationKJg=KJa/(Jg/da/)=
(45??(’?2, i\]ii)éa(z), WI;Jﬁéeéi'\?;%al]z(i??;R];r?r\?vitliq' Byt 4 (JrabA+ Irrér) =~ — (goap—e1a1)€. (5])
these substitutions, Eqet6) coincide with Eqs(19) of Sec.  The solution of the linear homogeneous systetd)—(51)
I, has the form A, B, u, &) ~ exdi(xx— 1t)], with x and v sat-
isfying the dispersion relation

By=—(goap—e1@1COS u)sin &.

&~Bp—(24) ', (50

B. Stability of autoresonant standing waves

2 2 — U .2 2 T -
Our second application is devoted to studying the stability [+ dyv o+ (Kaldp)erar ][ k“+dav = p(eoap—eiai)]
of the autoresonant standing wave solutions of Sec. Il with +dgd,(vk)?=0, (52
respect to small perioditemporal modulations. The latter
can be introduced in the problem via a periodic time depenwhere
dence in the boundary conditions. For the standing waves,

we seto=v=0, but now keep the time derivatives in Egs. d;=(0.5Kx/AJn)[(24p) " =gl

(45) and (46) and include nonvanishing and . Also, for - == —

simplicity, we shall focus on the autoresonant evolution d2=4p(Jrr— KrIrA/KA),

stage, where, to lowest order in(see beloy, one can ne- - = - (53
glect the interaction terms in Eq§45) and (46). Further- d3=Kr—Ka(24Jap) ",

more, we shall neglect the space variation of the wave vector Ly T

/ in our analysis. dy=(24)" "+ £Irab/ K.

We proceed by making the following ordering assump-
tions, subject toa posteriori verification. By definition,K
=4+ uy, and Q= — u,. We shall view bothu, and y; in
these expressions as small anddi=*?). This is our phase
locking assumption between the radial oscillations and th
modulation of the driving wave. In addition, we assume tha
the slow variableB (as in the case of the standing waves in
Sec. ), B=¢,, and y=—¢; (and therefored) are also
small and ofO(e%?). Finally, we view both the radial phase
mismatchu and the azimuthal shifé as beingsufficiently
small for approximating cog(&)~1 and sinf,&~(u,£) in in agreement with the predictions of the theory in Sec. I
our evolution equations. With these assumptions, to lowedisee Eqs(23) and (24)]. Since the right-hand sides of Egs.

Note that Eq. (52 justifies the assumed scalings
k,v~0(e3?. Also, from Egs.(48) and (50) we obtain
5A,B~0O(&3?), justifying another assumption in the theory.

ow we proceed to the stability problem. In the caseO,
gq. (52) yields two solutions

k5=~ (Kaldp)eiay,
_ _ (54)
ng P(egap—e1a1),

significant order ire, Egs.(42)—(45) become (54) are positivepurely spatial modulations are stable. Then,
0,1 w0 by continuity, sufficiently slow(small ») temporal modula-
ux~KE= £+ Kgé, tions of autoresonant standing waves are also stable until, as
v increases, one reverses the signs in the solutions of Eq.
£~Bp°—(24) 1, (52) for x2.

1)
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C. Autoresonant cnoidal waves Note that the smallness @f and ¢ requires the smallness of

In this application, we study purek:dependent solutions x=oale, whereo is the dimensionless parameter ‘character—
of the slow variational evolution equatiof$2)—(45) for the  izing the space variation of the wave vectérand.# in the
case when the driving term in Eq25) has the form{s, driver. We shall assume that<1 in the following (this is
+&,c0§ W (X)— wt]lexpli[ ¢(X)— wot) ]} with constantew and  our adiabaticity condition so u,é~O(x). Similarly to w
wo, but slowly varying wave vector®,=4(x) and ¢, and¢, the variables’A andB are also viewed as oscillating,
=k(x). Also, we shall assume that the phase velocitybut having negligible averages since, as follows from the
wl#(x) of the amplitude modulation satisfies the relationfirst two equations of Eqg57), these averages a@(oy).
wl#(x)=2k(x). We shall see that this matching allows one Then, for the oscillating components, E@S7) yield
to excite a stable, adiabatically varying cnoidal solution with

a having the form of a quasiperiodic wave moving with the Spx=KaSA+KRw &, 14,

velocity v(x) =2k(x). In this purelyx-dependent limit we _

setQ=w=const andy=0 in Egs.(42)—(45), yielding the 86=Bp— 3wyl A2,

slow evolution system (59

Ja0A+ 3B wl A %=¢,a,6u,
,LLX:277)\71_4)(X)_27T)\71(800.’0A/_81011A/)COS§, - -
0Iga0A A+ 0238 8, A+ B, = —(goap—£qa7) OE,
fX:BKJArp—%h_(é‘oaos_é‘la’ls)cosf, RAYMx RR éxx _x ( oto 1 1) f
. , _ (55  wheredu=pu—u and 6é=¢£—&. This linear system gives
(J+KIgR¢ +2Bw/K?) =2 a;sin u, the followinglocal characteristic equation for the wave num-
) ber « of the autoresonant oscillations:
(wJR+ B)X: _(80a0_81a1)5|n g,
_ _ _ (cik?+ep)(Cyk?+e,)+cax?=0, (60)
where, again, assuming the strotigublephase locking, we
will replace cosf,£)—1 and sinf,&)—(u.é). In addition, as  wheree;=s,a;, €,=gqap— &1, and
for the standing waves, we shall viewy, & andB in Egs.

(55) as small andO(e'?). Next we recall thatlk =4+ u, c1=(JalKn) + 2ol (pF2),
and h=v — w/K=~wuy//?>~0(e¥?), so R=A(X)+ wBIl< .
+0(¢). Then, to lowest order is, Egs.(55) become Co=—p 1= (0% A)(Irr—IraKr/Kn), (61)
px=KO— £+ KR, 14, Ca= 202(PA2) 21+ 2pA LI Al KR) (1~ £ IAKR K R).
E=Bp—swu 2, We observe that iflo=0 (this is the case of standing au-
0. 1 ) o (56)  toresonant wavescz=0 and the solutions of Eq60) are
(J +§Bw/4 )X=81C¥1/.L, Ki: _(KK/JA)SJ_E]_ and K%ZH(SOEO_SJ_;:L), Wh|Ch Coin-
0. 210 , o o cides with our previous resulisee Eqs(54)] for this case.
(0Jgt 0 Jgpéx/4A+B)x=—(goap—&1a7)¢, Since bothw? , are positive, the driven standing waves of the

NLS equation are stable. However, the positivenessipj
3br the w=0 case guarantees the stability of the autoresonant
cnoidal waves for sufficiently small values of= w//£.

where the objects with the zero subscript are evaluated
B=0 and R=A(x)=k?(x)—wy. Finally, we write A’
=A(x)+ A, where A is defined via K/[A(x),R(X)]

=/(x), view A as beingO(e*?, and linearize Eq¥56), VI CONCLUSIONS

yielding
_ We have studied the problem of excitation and control of
pix=Ka0A+KRwéy /4, cnoidal solutions of the NLS equation by driving the system
_ by oscillations/waves with adiabatically varying parameters.
E=Bp—swulA?, We have used the autoresonance effect for the excitation
_ _ (57)  purpose, i.e., the state in which the excited wave self-adjusts
(JabA+3Bwl£?) = —d+eja, its parameters to remain in an approximate resonance with
. . . the driver despite the variation of the driving frequency
(0IRAdA+ 02 IXpé A+ B)y=— wIpy— (g0ao—101) &, and/or wave vector. Different scenarios of entering and sus-

. taining the autoresonance in the NLS system were consid-
where () denotes evaluations &' =A(x), B=0, andR  ered.
=A(X). The simplest autoresonant solution of the NLS equation is
The autoresonant solution of Eq§7) Corresponds to obtained if one starts from a small uniform initial condition,
small oscillations ofx and& around the slow averaggsand ~ drives the system by a wave of the formexp{i[kox—kt
¢ given by[see the RHS of the last two equations of Egs.+#(1]}, where the frequencls— A(t) is slowly increasing
(57)] in time (A=d¢/dt, dA/dt<0), and passes the linear reso-
o . o nance pointA =0. Beyond this point, one excites a quasi-
—Jte1a1u=0, —wlp,—(g0ap—e1a1)é=0. periodic solution of form(see Sec. )l ¢=ay(t)expli[kx
(58)  —Kdt+d(t)]}, whereay~A*2andd(t)~ ¢(t), i.e., ¢ is phase
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locked with the driving wave. We have studied the stabilitytime evolution of two pairs of canonical actions and angles in
of this solution with respect to spatially periodic perturba-the associated dynamical problem.
tions and, in contrast to the plane wave solutions of the free  We have studied several applications of the averaged
(e=0) NLS equation, found a long-wavelength stability variational theory in Sec. V. For instance, we have shown
window for the autoresonant plane waves. that the autoresonant standing waves are stable with respect

We have shown(see Sec. Il that the aforementioned to sufficiently slow temporal modulations. We have shown
autoresonant plane waves can serve as boundary conditiofifat more general autoresonant cnoidal solutions in the
for exciting autoresonanstanding waves of the form¢  driven NLS system can also be excited by using plane au-
=a(x)exp(Aqt) in the NLS system. This goal is achieved by toresonant solutions as a boundary condition. However, the
using the driver of the forme(x)exp(Aqt), where e(x)  driver, in this case, must have the forfay+e;co§W¥(x)
=go+e,c0§W(X)]} and#(x)=V, is a slowly varying func-  — wt]lexp{i[ ¢(X)— wot) ]}, where the wave vector, = #(x)
tion of position. Therefore, the excitation of autoresonantand ¢,=k(x) are both slowly varying functions of position.
standing waves requires forcing by a superposition of an osthus the driver comprises superpositionof waves with
cillation and an adiabatically varying standing wave. Weadiabatically varying parameters. Furthermore, we have seen
have studied the autoresonance in this driven system and tRat, while the frequencie® and w, in the driver can be
the associated dynamical problem. Tdwublefrequency dy-  arbitrary, the stability of the autoresonant cnoidal waves re-
namic autoresonance in this problem and its relation to thguires an additional phase velocity matching, i@/ (x)
driven NLS equation were investigated in detail. =2k(x), in the system.

We have also constructed Whitham’s averaged variational
principle for the resonantly driven NLS equatidsee Sec.
IV) and used it for testing the temporal stability of the spa- ACKNOWLEDGMENT
tially autoresonant standing waves as well as for studying
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